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Correlation analysis is omnipresent in paleoclimatology, and often serves to support the proposed climatic 
interpretation of a given proxy record. However, this analysis presents several statistical challenges, each 
of which is sufficient to nullify the interpretation: the loss of degrees of freedom due to serial correlation, 
the test multiplicity problem in connection with a climate field, and the presence of age uncertainties. 
While these issues have long been known to statisticians, they are not widely appreciated by the wider 
paleoclimate community; yet they can have a first-order impact on scientific conclusions. Here we use 
three examples from the recent paleoclimate literature to highlight how spurious correlations affect the 
published interpretations of paleoclimate proxies, and suggest that future studies should address these 
issues to strengthen their conclusions. In some cases, correlations that were previously claimed to be 
significant are found insignificant, thereby challenging published interpretations. In other cases, minor 
adjustments can be made to safeguard against these concerns. Because such problems arise so commonly 
with paleoclimate data, we provide open-source code to address them. Ultimately, we conclude that 
statistics alone cannot ground-truth a proxy, and recommend establishing a mechanistic understanding 
of a proxy signal as a sounder basis for interpretation.

© 2016 Published by Elsevier B.V.
1. Introduction

Inferring past climate conditions from proxy archives is a cen-
tral tenet of paleoclimatology. The calibration of paleoclimate prox-
ies is accomplished in two main ways: space-based calibrations 
and time-based calibrations (defined below). In space-based cali-
brations, the values of a proxy at different locations are calibrated 
to measured climate indicators at the same locations, as exempli-
fied by the calibration of paleothermometers in the core-top of 
marine sediments (e.g. Tierney and Tingley, 2014; Khider et al., 
2015). This approach is relatively forgiving of time uncertainties, as 
long as core-top values are broadly contemporaneous, in relation to 
the question being asked of the cores. In time-based calibrations, 
on the other hand, proxy timeseries overlapping with the instru-
mental era are calibrated against an instrumental target (e.g. Jones 
et al., 2009; Tingley et al., 2012), via correlation analysis or the 
closely-related linear regression.

Thus “ground-truthing” a proxy record often involves estab-
lishing that its correlation to an instrumental climate variable 
(whether local, regional, or global) is significant in some way. 

* Corresponding author.
E-mail address: julieneg@usc.edu (J. Emile-Geay).
http://dx.doi.org/10.1016/j.epsl.2016.11.048
0012-821X/© 2016 Published by Elsevier B.V.
Significance of correlations is most commonly assessed via a 
t-test, which assumes that samples are independent, identically-
distributed, and Gaussian. However, these criteria may not be 
fulfilled in paleoclimate timeseries due to their intrinsic proper-
ties (Ghil et al., 2002).

Indeed, the loss of degrees of freedom due to autocorrelation 
has long been known to challenge the assumption of indepen-
dence (Yule, 1926), though workarounds are known (e.g. Dawdy 
and Matalas, 1964). Non-Gaussianity may also prove an issue, es-
pecially for precipitation timeseries, though relatively simple trans-
formations may alleviate it (Emile-Geay and Tingley, 2016).

Additionally, correlating proxies with instrumental climate 
fields is a common way of establishing the ability of a proxy 
to capture large-scale climate information. Unfortunately when 
implemented as a mining exercise using a large, spatially grid-
ded dataset, test multiplicity becomes a problem. We will re-
view how this problem may be successfully circumvented us-
ing simple statistical approaches (Benjamini and Hochberg, 1995;
Storey, 2002).

Finally, the presence of age uncertainties may bring substan-
tial uncertainties to time-based correlations between records (e.g. 
Crowley, 1999; Wunsch, 2003; Black et al., 2016). We will show 
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a robust approach to quantifying age uncertainties and how they 
propagate to correlation and other analyses.

The article is structured as follows. In Section 2 we show 
the importance of considering autocorrelation in cross-correlation 
analyses. In Section 3, we briefly introduce the “test multiplicity” 
problem and the false discovery rate and show how it affects cor-
relations with a climate field. In Section 4, we introduce the effects 
of age uncertainties, how they influence the interpretation of a 
speleothem record, and how this compounds with the other two 
challenges. We finish with a discussion of the significance of these 
results, and propose strategies to mitigate these statistical issues 
going forward.

2. Challenge #1: serial correlation

2.1. Theory

The most common way to determine the significance of Pear-
son’s product-moment correlation involves a t-test. Student’s t dis-
tribution is fully determined by the number of degrees of freedom 
available in the sample (ν). For N independent samples, ν = N −2, 
but it may be considerably lower when this assumption is violated, 
leading to overconfident assessments of significance.

As an example, consider correlations between two timeseries 
x(t) and y(t) generated by autoregressive processes of order 1 
(a common timeseries model for serially correlated data; e.g. 
Emile-Geay, 2016, Chapter 8). Each process is evenly sampled 500 
times and their correlation coefficient is 0.13, which is significant 
at the 5% level assuming independence (hence, ν = 498). However, 
the lag-1 autocorrelation of each time series (φ) is 0.8, which is 
common for climate variables like temperature, as well as for many 
paleoclimate records, which tend to have a red spectrum (Ghil et 
al., 2002). This means that neighboring samples are highly depen-
dent, so the effective numbers of degrees of freedom, νeff , is much 
lower. This number may be estimated via the following relation 
(Dawdy and Matalas, 1964):

νeff = N
1 − φx · φy

1 + φx · φy
(1)

where φx , φy are the lag-1 autocorrelation coefficients of two time 
series x, y respectively.

Based on equation (1), when either lag-1 autocorrelation co-
efficient increases, the effective number of degrees of freedom 
decreases, and the p-value of the test increases. In this case, the 
effective number of degrees of freedom decreases from 498 to 99 
after considering the autocorrelation, and the p-value rises to 0.19, 
suggesting the correlation is no longer significant at the 5% level. 
Fig. 1 shows how the p-value and the degrees of freedom change 
for a time series of 500 samples and a fixed correlation of 0.13 just 
by changing the autocorrelation coefficients (φx = φy = φ for sim-
plicity). As the autocorrelation increases, the p-values increases, 
and the degrees of freedom decrease. When all samples are inde-
pendent (φx = φy = 0), the p-value is far smaller than 5%. When 
the autocorrelation increases to about 0.65, the p-value becomes 
larger than 5%, making the correlation insignificant at this level. 
The problem only worsens as φ increases, and as we shall see in 
this article, values above 0.8 are quite typical of paleoclimate time-
series.

Autocorrelation is thus a very serious challenge, which alone 
can substantially raise the bar of a significance test; if ignored, it 
may lead to overconfident assessments of significance.

2.2. Application

To see this effect at work in the real world, consider the ex-
ample of Proctor et al. (2000), who used the band width in a 
Fig. 1. The p-value and numbers of degrees of freedom (DOF) of the correlation 
(0.13) between two AR(1) time series (500 samples each) with the changing au-
tocorrelation φ. The green dashed line is the 5% criteria for 5% level significance 
test.

stalagmite (SU-96-7) from Uamh an Tartair (northwest Scotland) 
to reconstruct the North Atlantic Oscillation (NAO). The record was 
dated by counting annual bands, with only 17 bands as double an-
nual bands, implying a counting error less than 20 years. When 
compared to the whole length of the entire 1087-year-long record, 
this amounts to only 2%. Therefore, the influence of age uncertain-
ties can be neglected to first order.

The climatic interpretation of the stalagmite was based on the 
high correlation between the band width and the temperature/pre-
cipitation ratio (r = 0.80) as well as the correlation between band 
width and the winter NAO index (r = −0.70) by using decadally-
smoothed data. Here we apply the effective degrees of freedom 
in testing the significance of correlation, since the correlation sig-
nificance may be biased by autocorrelation due to the effect of 
smoothing. Also, inherent aspects of these records leads to compli-
cations using statistics based on normally distributed populations, 
as the band width distribution of the stalagmite record is bimodal 
instead of normal. The t-test for correlation significance assumes 
that both time series are normally distributed, negating its use as 
a statistical tool unless appropriate transformations are made.

Considering the autocorrelation of the smoothed data, the high 
correlation between the band width of stalagmites and the tem-
perature/precipitation ratio (T/P) in the instrumental period is not 
significant at 5% significance level (the adjusted p-value is 0.44). 
The correlation between the band width of stalagmites and winter 
NAO is also not significant, because of high autocorrelations of the 
smoothed time series of the band width (φ = 0.99), T/P (φ = 0.99) 
and winter NAO (φ = 0.95). However, this result is based on an as-
sumption of normality, and as discussed above, the distribution of 
the band width in this speleothem is bimodal, hence non-normal 
(not shown). Thus, transforming the non-normal series to normal-
ity (Emile-Geay and Tingley, 2016) is necessary. After this transfor-
mation, the correlations pass the significance test at the 5% level: 
for the correlation between the band width and T/P, νeff is 93 
(N = 115), and the p-value is 3 ×10−3; for the correlation between 
the band width and winter NAO, νeff is 95 (N = 126), and the 
p-value is 4 × 10−2, just under the 5% threshold. While we con-
clude that the original interpretation is supported by our analysis, 
the authors reached this conclusion thanks to error compensation, 
potentially undermining their point.

We note, however, that the decrease of DOF due to smoothing 
was considered when this reconstruction was used for studying 
the long-term variability of the NAO in the high-profile study of 
Trouet et al. (2009).
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3. Challenge #2: test multiplicity

3.1. Theory

When assessing correlations with a field, multiple tests are car-
ried out at different locations simultaneously. For example, if a 
correlation test is applied to 1000 locations with a significance 
level of 5%, one would expect about 50 hypotheses to be falsely 
rejected (in this case, 50 correlations would be deemed significant 
when in fact they are not), which is unacceptably high. The fun-
damental problem is that the test level α (the probability of false 
positives, i.e. the probability of falsely rejecting the null hypothe-
sis of zero correlation) applies to pairwise comparisons, but not to 
multiple such comparisons. The finer the grid, the more such tests 
are simultaneously carried out, and the higher the risk of identi-
fying spurious correlations as “significant” when in fact they are 
not. This test multiplicity problem is well known in the statisti-
cal literature and solutions exist (Benjamini and Hochberg, 1995;
Storey, 2002).

In particular, the False Discovery Rate (FDR) procedure
(Benjamini and Hochberg, 1995) has been widely applied (>34,000
Google Scholar citations at the time of writing) to control the pro-
portion of falsely rejected null hypotheses out of all rejected null 
hypotheses, thus offering a level of scientific rigor that naive cor-
relation testing does not afford. The term “false discovery” here 
is synonymous with “falsely identified significant correlations”. 
Instead of restricting the occurrence of falsely rejected null hy-
potheses, the FDR procedure controls the proportion of erroneously 
rejected null hypotheses. Setting q = 5% in the FDR procedure, 
guarantees that 5% or fewer of the locations where the null hy-
pothesis is rejected are false detections on average, so the pro-
portion of false rejections is controlled. The FDR procedure of 
Benjamini and Hochberg (1995) proceeds as follows:

1. Carry out the test (calculate p-values) at all m locations;
2. Rank the p-values p(i) in increasing order: p(1) ≤ p(2) ≤ ... ≤

p(m);
3. Define k as the largest i for which p(i) ≤ q i

m ;
4. Reject hypotheses at locations i = 1, 2, ..., k.

In this procedure, the FDR treats locations with low p-values 
as most significant, ranking p-values from high to low. If the 
largest p-value is less than its corresponding threshold, then all 
tests are regarded as significant. If the largest p-value is greater 
than its corresponding threshold, then it is compared to the sec-
ond largest p-value with a more restricted threshold – and so on. 
These thresholds guarantee that the expected rate of falsely pos-
itive hypotheses are smaller than α. Through this procedure, the 
number of rejected hypotheses is k, and the expected number of 
falsely rejected hypotheses is smaller than mp(k) , such that the 
fraction of falsely rejected hypotheses is smaller than mp(k)/k. The 
third step in the FDR procedure limits the fraction of falsely re-
jected hypotheses to be smaller than q, which is the threshold for 
the fraction of falsely rejected hypotheses. Thus the FDR procedure 
ensures that the fraction of erroneously detected relationships is 
smaller than a specified threshold.

This procedure is graphically illustrated by Fig. 2, adapted from 
Ventura et al. (2004). In order to clearly show the difference be-
tween the traditional and the FDR procedure, q and α were both 
set to 20%. At each location (p(i)), p-values were ranked in increas-
ing order and plotted against i/m, where m is the total number 
of locations. The blue dashed line is the traditional significance 
threshold. All dots below the blue dashed line are significant by 
the traditional procedure. With the FDR procedure, only those 
p-values under the red line (green dots) are significant. Therefore, 
Fig. 2. Illustration of the traditional significance test procedure and the FDR proce-
dure on an illustrative example, with q = α = 20%. p-values at each grid point (p(i)) 
are ranked in increasing order, plotted against i/m, where m is the total number of 
grid points. The blue dashed line is the traditional α threshold for the p-value. 
Green dots indicate they are significant by both traditional and FDR procedure, and 
blue dots indicate they are only significant by the traditional procedure. (For inter-
pretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

some p-values are deemed significant by the traditional proce-
dure but not by the FDR procedure. Applying this methodology 
lowers the likelihood of identifying spurious correlations as signif-
icant, hence making correlation tests more stringent. We should 
note that the absence of significant correlations does not imply 
that the correlation is inexistent – only that the data do not pro-
vide enough evidence to reject the null hypothesis of zero correla-
tion.

3.2. Application

Ventura et al. (2004) proposed a simple implementation of the 
FDR procedure for climate fields, and showed that its assumptions 
are robust to the spatial correlation levels typical of climate fields. 
Here we use the code of Benjamini and Hochberg (1995), which 
is equivalent. To show how to apply this procedure to field cor-
relations, we use the study of Zhu et al. (2012) as an example. 
The authors generated a cellulose δ18O record of Merkus pines for 
the past 140 years in Kririrom National Park, southern Cambodia 
(KRPM15B, 11.29◦N; 104.25◦E; 675 m). This record was dated by 
ring-counting. The authors assert that this cellulose δ18O record is 
dominantly controlled by convection over the Indo-Pacific Warm 
Pool (IPWP), an interpretation buttressed by high correlations of 
cellulose δ18O with instrumental precipitation and outgoing long-
wave radiation over the IPWP (Fig. 7 in Zhu et al., 2012). This 
explanation is reasonable because the cellulose δ18O is mainly 
controlled by the δ18O in precipitation during the rainy season, 
which is often depleted when the rainfall increases (the so-called 
“amount effect”; Dansgaard, 1964). During El Niño events, the pre-
cipitation in Southeast Asia is usually suppressed, which would 
lead to higher δ18O values.

Here we consider the false discovery rate in this spatial cor-
relation (Fig. 7 in Zhu et al., 2012). When the FDR is considered, 
none of the correlations are found significant, even at the relatively 
permissive 10% level chosen by authors (Fig. 3). This calls into 
question the proposed relationship between cellulose δ18O and in-
terannual changes in tropical convection at this site. However, we 
did find that the correlation between the cellulose δ18O and (un-
smoothed) NINO4 index is significant at the 5% level (r = 0.45, 
p-value = 2.3 × 10−6), considering autocorrelation as above. This 
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Fig. 3. Spatial correlation of October Kirirom cellulose δ18O values with the 
October–November–December mean of (a) CMAP precipitation, and (b) NOAA inter-
polated OLR. Black dots indicate that the correlation does not pass the significance 
test at the 90% level.

indicates that cellulose δ18O, or at least rainfall δ18O at the site, 
may be connected with large scale changes due to the El Niño-
Southern Oscillation. However, the explanation that local precipi-
tation changes during El Niño events dominate the cellulose δ18O
may need further examination, for instance via forward modeling 
(Evans, 2007).

4. Challenge #3: age uncertainties

4.1. Theory

Age uncertainties have long been known to affect inferences 
made from paleoclimate data (e.g. Clark and Thompson, 1979), 
including correlation analysis (see Mudelsee, 2001; Rehfeld and 
Kurths, 2014, for recent examples). Indeed, Wunsch (2003) showed 
that even two randomly generated, unrelated time series could 
appear to correlate well with each other by adjusting the chronol-
ogy within age uncertainties. Thus, quantifying age uncertainties 
is critical to the analysis of paleoclimate records. Many methods 
have been developed to do so (e.g. Haslett and Parnell, 2008;
Blaauw and Christen, 2011). Additionally, various methods have 
been devised to deal with correlation (or covariance) under age 
uncertainties (Haam and Huybers, 2010). In the next section, we 
illustrate how age uncertainties may influence correlation analysis, 
and how they may compound the effects of autocorrelation and 
test multiplicity by drawing an example from a high-profile publi-
cation (McCabe-Glynn et al., 2013).

4.2. Compound challenges in one: the case of Crystal Cave

Recently, McCabe-Glynn et al. (2013) applied time-based cali-
brations to δ18O data from a stalagmite from Crystal Cave, south-
ern California. They interpreted the record as a proxy for sea 
surface temperature (SST) in the Kuroshio Extension region, argu-
ing that warm SST in the area may generate southwesterly wind 
anomalies over southern California, bringing isotopically-enriched 
moisture to the cave. They also found a strong 22-year periodicity, 
which they linked to solar cycles, and found that some southwest-
ern North American droughts coincided with episodes of warm 
Kuroshio Extension SSTs, as reconstructed from the Crystal Cave 
stalagmite. Some of these conclusions are based on a correlation 
analysis that encounters the three challenges of interest in this 
study: serial correlation, test multiplicity and age uncertainties. 
Here we will show one way to properly address these challenges.

4.3. Effect of serial correlation

We reuse the δ18O data from stalagmite CRC-3, collected 
from Crystal Cave in Sequoia National Park, California (36.59◦N; 
118.82◦W; 1386 m), which was interpolated at annual scale and 
archived online.1 As in the original study, the record is correlated 
to SST anomaly data from the Kaplan SST v2 dataset (Kaplan et al., 
1998) (1856–2007).

The correlation is shown in Fig. 4b, to be compared with Sup-
plementary Fig. S6a in McCabe-Glynn et al. (2013). Because both 
the δ18O series and SST field are intrinsically autocorrelated (the 
autocorrelation of δ18O series is 0.95, and the autocorrelation of 
SST is 0.11–0.76, depending on location), the effective number 
of degrees of freedom is much lower than its theoretical value 
(N − 2 = 149). Indeed νeff is less than 60 in the Kuroshio Exten-
sion region (Fig. 4a). Hence, when this effect is considered (Fig. 4c), 
far fewer correlations pass the significance test (Fig. 4b, c). While 
McCabe-Glynn et al. (2013) had considered the effect of serial cor-
relation using the method of Macias-Fauria et al. (2012), they did 
not graphically represent these results, giving little indication of 
where the relationship might be reliable. Nonetheless, our result is 
consistent with theirs, in that correlations over the Kuroshio Ex-
tension region pass the significance test with both approaches.

4.4. Effect of test multiplicity

Since the correlation between the δ18O record and SST is also 
a field correlation, we need to consider test multiplicity. The result 
is shown in Fig. 4d, e. If autocorrelation is ignored, the FDR pro-
cedure results in fewer correlations passing the significance test 
(Fig. 4d vs. Fig. 4b). When both autocorrelation and multiplicity 
are considered, no correlation passes the significance test (Fig. 4e). 
This result suggests that the correlation between δ18O record and 
instrumental SST may not be used as a basis for the record’s inter-
pretation.

4.5. Effect of age uncertainties

Another problem compounding serial correlation stems from 
the fact that the age model for the speleothem carries uncertain-
ties of years to decades (Cheng et al., 2013), and these uncertain-
ties may propagate to other inferences made from the proxy. The 
age uncertainties were quantified in McCabe-Glynn et al. (2013)
using the StalAge algorithm (Scholz and Hoffmann, 2011). While 
the StalAge code exports 95%-confidence limits for the correspond-
ing ages, it does not export possible age ensembles, which are 
essential for propagating uncertainty to other inferences. Here we 
leverage the power of ensembles to quantifying age uncertainties 
in correlation analysis.

4.5.1. Age model
We chose to model age uncertainties using Bchron (Haslett and 

Parnell, 2008), a Bayesian probability model allowing for random 
variations in accumulation rate between tie points. Bchron is ca-
pable of dealing with outliers and hiatuses (Parnell et al., 2011), 

1 ftp://ftp.ncdc.noaa.gov/pub/data/paleo/speleothem/northamerica/usa/california/
crystal2013.txt.

ftp://ftp.ncdc.noaa.gov/pub/data/paleo/speleothem/northamerica/usa/california/crystal2013.txt
ftp://ftp.ncdc.noaa.gov/pub/data/paleo/speleothem/northamerica/usa/california/crystal2013.txt
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Fig. 4. (a) The effective number of degrees of freedom of the correlation between Crystal Cave δ18O and SST from 1856–2007; The correlation between these series, 
considering the test multiplicity problem (False Discovery Rate) (d, e), or not (b, c); considering autocorrelation (c, e) or not (b, d). Black dots indicate that the correlation 
does not pass the significance test at the 5% level.
and naturally produces more hiatuses than StalAge. Bchron pro-
ceeds as follows: for each dated sample, the algorithm randomly 
selects a calendar date consistent with the age information (mea-
sured age and age error) and monotonicity (deeper sample with 
older age). It then inserts several points (at depths we want to 
know ages) between dated samples consistent with monotonic-
ity, and then linearly interpolates between those points. Finally, it 
repeats this process many times until enough realizations fit the 
measured ages. The main advantage of Bchron here is the ability 
to extract an ensemble of age models all consistent with the pos-
terior distribution of ages. For a review of different approaches to 
age modeling, see Scholz et al. (2012).

The age models are compared in Fig. 5, and one can see that 
they are quite close. The choice of age model (blue vs. black curve) 
introduces relatively small differences in the median age model, 
but the inclusion of a full ensemble of 1000 plausible age real-
izations makes a great difference indeed. Each of these age real-
izations corresponds to a different δ18O time series: Fig. 6 (left) 
shows three of them, corresponding to the lower (2.5%), median 
(50%) and upper (97.5%) quantiles of the age distribution. One can 
see that many of the major features of the δ18O timeseries can 
shift by about 50 years, making a correlation to instrumental data 
fraught with uncertainty.

This may be seen in more detail in Fig. 5. While the median age 
models from the two methods (blue and black curves) do appear 
quite close, there are large offsets between δ18O timeseries (Fig. 6, 
right), especially before AD 1960. For instance, the large peak ca.
1890 in McCabe-Glynn et al. (2013), is centered around 1900 in 
the median Bchron age model. Such differences are especially sig-
nificant if one tries to correlate them to other climatic timeseries, 
as we now do.
Fig. 5. The age modeling results of the Crystal Cave δ18O record using a Bchron age 
model. The gray area is the 95% confidence interval of the age at each depth. The 
red lines show 10 random paths out of the 1000 age models generated, and the blue 
curve shows the StalAge-generated model used by McCabe-Glynn et al. (2013). (For 
interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)

4.5.2. Correlations considering age uncertainty and autocorrelation
We assess the impact of chronological uncertainties by repeat-

ing the previous analysis on each of the 1000 realizations of the 
δ18O time series, similarly interpolated to an annual scale to facili-
tate correlations to SST. In the following analysis, we will also take 
autocorrelation into account.
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Fig. 6. Left panel: The median, 97.5% quantile and 2.5% quantile of the ensemble of 1000 Crystal δ18O time generated from the Bchron model. Right panel: The time series 
of δ18O record from McCabe-Glynn et al. (2013) (blue) and the median of δ18O record from the Bchron model (black). (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

Fig. 7. Correlations considering age uncertainty. The median (a), interquartile range (b), the 2.5% (c) and the 97.5% (d) percentile of the correlation between the δ18O age 
ensemble and SST. Black dots indicate that the correlation does not pass the significance test at the 5% level, accounting for serial correlation. Note that the interquartile 
range here is a measure of distributional spread, and has no measure of significance attached to it.
Using the full age ensemble, one obtains 1000 δ18O-SST corre-
lations for each grid point, from which one may infer an empir-
ical distribution, whose median, 2.5% and 97.5% percentiles, and 
interquartile range (IQR) are reported in Fig. 7. The median is 
the aspect of the distribution that most studies use exclusively 
(for Gaussians, the median, mean and mode coincide). Due to the 
construction of our ensemble, the 2.5% quantile gathers some of 
the strongest negative correlations, and the 97.5% quantile gathers 
some of the strongest positive correlations. The IQR measures the 
spread between the 25% and 75% quantiles (the width of the distri-
bution), and is therefore an indication of the spread of correlations 
due to age uncertainties alone.

The pattern of correlations for the median age model is similar 
to Fig. 4b, but the absolute values of correlations are much smaller, 
and the positive center in the North Pacific is shifted southward. 
Also, none of the median correlations pass the significance test 
at the 5% level. Since McCabe-Glynn et al. (2013) use the Stal-
Age model, this suggests that the correlation between the δ18O 
record and instrumental SST may be dependent on the age model. 
However, Fig. 5 clearly shows that the StalAge model is within the 
95% confidence bounds of the Bchron age model, which underlines 
that age uncertainties are generally quite large compared to the 
timescale of variability in the SST record, and should therefore be 
accounted for in the analysis of correlations.

The pattern of the range of the correlation (IQR, Fig. 7b) is quite 
similar to Fig. 4b, which indicates that the regions of highest cor-
relation in McCabe-Glynn et al. (2013) correspond to the regions of 
largest uncertainties in the age models. The 97.5% quantile and the 
2.5% quantiles (Fig. 7c, d) also correspond to the regions of pos-
itive/negative correlation in Fig. 4b, and the correlation in some 
regions passes the significance test. However, the corresponding 
pattern differs from age ensemble to age ensemble, and from the 
published result, indicating a lack of robust relationship on which 
to build a reliable interpretation.
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Fig. 8. Same as Fig. 7, but testing for field correlations while controlling for the False Discovery Rate.

Fig. 9. Illustration of the FDR procedure on the 2.5% quantile (a) and the 97.5% quantile (b) correlations shown in Fig. 8, using the false discovery rate q = 5% (red line). 
p-values at each grid point (p(i)) are ranked in increasing order, plotted against i/m, where m is the total number of grid points. The blue dashed line is the traditional 5% 
threshold for the p-value. Dots with p-values below this threshold are shown in blue. In this example, many dots fall below the nominal threshold (5%), but none fall below 
the red line, which means that they are not significant according to the FDR-controlling procedure. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)
4.6. Correlations considering all three challenges

Adding to these challenges, when the multiple-test problem is 
considered, none of the correlations for the 97.5% or 2.5% quan-
tiles of the age ensemble pass the significance test (Fig. 8). This 
is because, while some p-values fall below the nominal thresh-
old (Fig. 9, blue dashed lines), none drop under the FDR threshold 
(Fig. 9, red line), implying that these correlations are not signifi-
cant at the 5% level. Thus the interpretation of Crystal Cave δ18O 
as a proxy for SST in the Kuroshio Extension (or SST anywhere) 
should be revisited.

4.7. Time-uncertainty spectral analysis

Finally, we assess the influence of chronological uncertainties 
on inferences made in the spectral domain. We use the multi-
taper method (Thomson, 1982), which achieves an optimal tradeoff 
between leakage and resolution. We use a half-bandwidth parame-
ter of 4, which favors statistical significance over resolution, and is 
therefore the most conservative setting. The multi-taper spectra of 
the δ18O record (855–2007 AD) from the two age models are pre-
sented in Fig. 10. It shows that the δ18O record derived from the 
median of the Bchron ensemble has a dominant period ca. 18 years 
while the published data exhibit a dominant period of 21 years. 
This is clearly within age uncertainties, despite McCabe-Glynn et 
al. (2013) having used REDFIT, a variant of the Lomb–Scargle peri-
odogram (Schulz and Mudelsee, 2002). Therefore, the multi-taper 
spectral method is suitable for the comparison. Considering that 
much of the uncertainty lies above the red line and gray area 
in Fig. 10, it is hard to distinguish significant periodicities from 
red noise. This suggests that there may not be any notable har-
monic cycles in the δ18O record at any scale less than 1000 years. 
Thus more evidence would be needed to draw a connection to the 
22-year Hale solar cycle, as done in McCabe-Glynn et al. (2013).
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Fig. 10. The MTM-estimated spectra of the δ18O record from the Bchron age model 
(blue line and gray shaded area) compared to the spectrum of the published record, 
together with a simulated AR(1) benchmark. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

We showed how to address the three main challenges of corre-
lation analysis and how these challenges weaken the conclusions 
of the original study. The example illustrates how each challenge 
in isolation would be enough to question the main conclusions, 
and their combination even more so. In closing, we note that al-
though we do not find significant correlations between the Crystal 
Cave record and sea-surface temperature, we cannot rule out the 
existence of such correlations. The short calibration period and rel-
atively large age uncertainties simply preclude the establishment 
of significant correlations with the current datasets.

Finally, we stress that the interpretation of the oxygen iso-
tope composition of speleothem calcite is complex (LeGrande and 
Schmidt, 2009), and that other factors may influence the δ18O
record in Crystal Cave. The variation of δ18O of precipitation 
in California can be affected by changes in condensation height 
(Buenning et al., 2013), and δ18O in precipitation is known to be 
influenced by source-water composition due to shifts in storm-
track location (Oster et al., 2015). Thus, the published interpreta-
tion of Crystal Cave δ18O needs to be further investigated.

5. Discussion

In a provocative paper, Ioannidis (2005) concluded that “most 
published research findings are false”. Central to this problem is a 
widespread tendency to hunt for statistical effects (often, correla-
tions) that pass a significance threshold of 95% (i.e. a 5% probabil-
ity of false positive), a practice often dubbed “p-hacking”. While 
the paper focused on biomedical research, some of its conclusions 
transfer to paleoclimatology, and the Earth sciences at large. In par-
ticular, the existence of important challenges in correlation analysis 
(autocorrelation, false-discovery rate and age uncertainties) should 
be recognized by all practicing paleoclimatologists. In this article 
we illustrate these challenges using three examples, showing how 
published interpretations may be changed by one challenge alone, 
or by a combination of them.

We began with showing how autocorrelation and non-normality 
affect correlation analysis by using the example from Proctor et al.
(2000), who reconstructed the NAO index using layer thickness in 
a stalagmite from Scotland. We found that properly taking those 
into account did not change the interpretation, though the lat-
ter would have been more robust had the authors taken these 
challenges into consideration. Autocorrelation is commonplace in 
paleoclimate proxies because many processes (e.g. bioturbation in 
sediment cores, groundwater mixing in speleothems, and firn dif-
fusion in ice cores) smooth out climate signals. Autocorrelation 
should always be a concern unless it can be demonstrated other-
wise.

The test multiplicity problem is another serious challenge of 
correlation analysis, as we showed in the example of Zhu et al.
(2012). The spatial correlations between their cellulose δ18O record 
and instrumental precipitation/outgoing longwave radiation over 
the Indo-Pacific Warm Pool in this paper are not significant after 
considering the false discovery rate. However, we find correlations 
with the NINO4 index significant, with the index explaining about 
25% of the record’s variance.

Age uncertainties also challenge the robustness of correlation 
analysis and we show that they may also combine with other chal-
lenges in the example of McCabe-Glynn et al. (2013), who claimed, 
on the basis of correlations to the SST field, to identify a rela-
tionship between the δ18O record of a speleothem from southern 
California and the SST in the Kuroshio Extension region. We show, 
by considering all three challenges, that no correlation survives the 
test.

These three examples lead us to draw attention to the impor-
tance of:

• using established statistical procedures to guard against the 
misleading impacts of spurious correlations. Several books 
(Wilks, 2011; Mudelsee, 2013; Emile-Geay, 2016) address 
these challenges in more detail.

• using the rich output of age modeling software (not just the 
median age) to appraise the effect of age uncertainties on a 
study’s conclusions.

• establishing a mechanistic understanding for proxy signals, 
and only relying on statistical approaches when there are suf-
ficient numbers of degrees of freedom to unequivocally reject 
chance correlations.

While we do not dispute that the records scrutinized here con-
tain potentially valuable climatic information, our main message is 
that it is often impossible to establish so by a purely statistical ap-
proach. Instead, we encourage detailed process studies to elucidate 
the climatic and/or hydrological controls on δ18O, or other proxies, 
in various archives.

For speleothems, possible strategies involve the forward mod-
eling of cave processes (such as Baker et al., 2012; Partin et al., 
2013, and others), and/or cave instrumentation (such as Spötl et 
al., 2005; Partin et al., 2012, and others) to better ascertain the 
processes that control the recorded oxygen isotope signal. For 
many speleothem studies, age modeling considerations will be of 
secondary importance: in studies of glacial-interglacial cycles, for 
instance, age offsets of a few decades are immaterial. However, 
the interpretation of δ18O in climate proxies (whether in terms 
of rainfall, temperature, or other factors) is usually complex, and 
therefore should be backed by isotope-enabled models (such as 
LeGrande and Schmidt, 2009; Pausata et al., 2011, and others). We 
note that proxy system modeling is a burgeoning field with ap-
plications to all paleoclimate archives, not just speleothems (e.g. 
Schmidt, 1999; Evans, 2007; Dee et al., 2015).

For the data collecting and measuring stage, high resolution 
sampling is suggested; von Gunten et al. (2012) suggested col-
lecting 80–100 data points over the calibration period for time-
based calibrations to achieve a sufficient effective sample size. If 
the smoothing scale is known, the record with smaller smoothing 
scale should be used in the time-based calibration. Also we should 
note that age uncertainties set the limit of the usage of proxy data. 
For example, proxy data with decadal age uncertainties cannot be 
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used in interannual-scale research questions, but may be used in 
centennial-scale research questions (Birks et al., 2012).

Our goal in presenting these results is not to indict a partic-
ular set of authors, as the unsophisticated data-analytical prac-
tices of the original studies are unfortunately rather common in 
the paleoclimate literature. Instead, we wish to draw attention 
to under-appreciated statistical issues, with the hope of lessening 
the occurrences of proxy interpretations based on spurious cor-
relations, and to improve the robustness of future paleoclimate 
studies. In this spirit, we are making the Python code associated 
with this study freely available at https :/ /github .com /ClimateTools /
Correlation _EPSL in order to disseminate best practices.
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